Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Virol Sin ; 2022 Sep 28.
Article in English | MEDLINE | ID: covidwho-2050059

ABSTRACT

During the two-year pandemic of coronavirus disease 2019 (COVID-19), its causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been evolving. SARS-CoV-2 Delta, a variant of concern, has become the dominant circulating strain worldwide within just a few months. Here, we performed a comprehensive analysis of a new B.1.617.2 Delta strain (Delta630) compared with the early WIV04 strain (WIV04) in vitro and in vivo, in terms of replication, infectivity, pathogenicity, and transmission in hamsters. When inoculated intranasally, Delta630 led to more pronounced weight loss and more severe disease in hamsters. Moreover, 40% mortality occurred about one week after infection with 104 PFU of Delta630, whereas no deaths occurred even after infection with 105 PFU of WIV04 or other strains belonging to the Delta variant. Moreover, Delta630 outgrew over WIV04 in the competitive aerosol transmission experiment. Taken together, the Delta630 strain showed increased replication ability, pathogenicity, and transmissibility over WIV04 in hamsters. To our knowledge, this is the first SARS-CoV-2 strain that causes death in a hamster model, which could be an asset for the efficacy evaluation of vaccines and antivirals against infections of SARS-CoV-2 Delta strains. The underlying molecular mechanisms of increased virulence and transmission await further analysis.

2.
Microbiol Spectr ; 10(1): e0143821, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1608700

ABSTRACT

With the emergence and wide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs), such as the Delta variant (B.1.617.2 lineage and AY sublineage), it is important to track VOCs for sourcing of transmission. Currently, whole-genome sequencing is commonly used for detecting VOCs, but this is limited by the high costs of reagents and sophisticated sequencers. In this study, common mutations in the genomes of SARS-CoV-2 VOCs were identified by analyzing more than 1 million SARS-CoV-2 genomes from public data. Among them, mutations C1709A (a change of C to A at position 1709) and C56G, respectively, were found in more than 99% of the genomes of Alpha and Delta variants and were specific to them. Then, a method using the amplification refractory mutation system combined with quantitative reverse transcription-PCR (ARMS-RT-qPCR) based on the two mutations was developed for identifying both VOCs. The assay can detect as little as 1 copy/µL of the VOCs, and the results for identifying Alpha and Delta variants in clinical samples by the ARMS-RT-qPCR assay showed 100% agreement with the results using sequencing-based methods. The whole assay can be completed in 2.5 h using commercial fluorescent PCR instruments. Therefore, the ARMS-RT-qPCR assay could be used for screening the two highly concerning variants Alpha and Delta by normal PCR laboratories in airports and in hospitals and other health-related organizations. Additionally, based on the unique mutations identified by the genomic analysis, similar molecular assays can be developed for rapid identification of other VOCs. IMPORTANCE The current stage of the pandemic, led by SARS-CoV-2 variants of concern (VOCs), underscores the necessity to develop a cost-effective and rapid molecular diagnosis assay to differentiate the VOCs. In this study, over 1 million SARS-CoV-2 genomic sequences of high quality from GISAID were analyzed and a network of the common mutations of the lineages was constructed. The conserved unique mutations specific for SARS-CoV-2 VOCs were found. Then, ARMS-RT-qPCR assays based on the two unique mutations of the Alpha and Delta variants were developed for the detection of the two VOCs. Application of the assay in clinical samples demonstrated that the current method is a convenient, cost-effective, and rapid way to screen the target SARS-CoV-2 VOCs.


Subject(s)
COVID-19/virology , Nucleic Acid Amplification Techniques/methods , SARS-CoV-2/genetics , Genome, Viral , High-Throughput Nucleotide Sequencing , Mutation , Nucleic Acid Amplification Techniques/trends , Pharynx/virology , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/classification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/classification , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL